Is null - point reconnection important for solar flux emergence ?
نویسنده
چکیده
The role of null-point reconnection in a 3D numerical MHD model of solar emerging flux is investigated. The model consists of a twisted magnetic flux tube rising through a stratified convection zone and atmosphere to interact and reconnect with a horizontal overlying magnetic field in the atmosphere. Null points appear as the reconnection begins and persist throughout the rest of the emergence, where they can be found mostly in the model photosphere and transition region, forming two loose clusters on either side of the emerging flux tube. Up to 26 nulls are present at any one time, and tracking in time shows that there is a total of 305 overall, despite the initial simplicity of the magnetic field configuration. We find evidence for the reality of the nulls in terms of their methods of creation and destruction, their balance of signs, their long lifetimes, and their geometrical stability. We then show that due to the low parallel electric fields associated with the nulls, null-point reconnection is not the main type of magnetic reconnection involved in the interaction of the newly emerged flux with the overlying field. However, the large number of nulls implies that the topological structure of the magnetic field must be very complex and the importance of reconnection along separators or separatrix surfaces for flux emergence cannot be ruled out.
منابع مشابه
Driving Major Solar Flares and Eruptions: A Review
This review focuses on the processes that energize and trigger Mand X-class solar flares and associated flux-rope destabilizations. Numerical modeling of specific solar regions is hampered by uncertain coronal-field reconstructions and by poorly understood magnetic reconnection; these limitations result in uncertain estimates of field topology, energy, and helicity. The primary advances in unde...
متن کاملThe physical mechanisms that initiate and drive solar eruptions
Solar eruptions are due to a sudden destabilization of force-free coronal magnetic fields. But the detailed mechanisms which can bring the corona towards an eruptive stage, then trigger and drive the eruption, and finally make it explosive, are not fully understood. A large variety of storage-and-release models have been developed and opposed to each other since 40 years. For example, photosphe...
متن کاملPredictions of Energy and Helicity in Four Major Eruptive Solar Flares
In order to better understand the solar genesis of interplanetary magnetic clouds (MCs), we model the magnetic and topological properties of four large eruptive solar flares and relate them to observations. We use the three-dimensional Minimum Current Corona model (Longcope, 1996, Solar Phys. 169, 91) and observations of pre-flare photospheric magnetic field and flare ribbons to derive values o...
متن کاملCatastrophic eruption of magnetic flux rope in the corona and solar wind with and without magnetic reconnection
It is generally believed that the magnetic free energy accumulated in the corona serves as a main energy source for solar explosions such as coronal mass ejections (CMEs). In the framework of the flux rope catastrophe model for CMEs, the energy may be abruptly released either by an ideal magnetohydrodynamic (MHD) catastrophe, which belongs to a global magnetic topological instability of the sys...
متن کاملInterchange Reconnection: Remote Sensing of Solar Signature and Role in Heliospheric Magnetic Flux Budget
Interchange reconnection at the Sun, that is, reconnection between a doublyconnected field loop and singly-connected or open field line that extends to infinity, has important implications for the heliospheric magnetic flux budget. Recent work on the topic is reviewed, with emphasis on two aspects. The first is a possible heliospheric signature of interchange reconnection at the coronal hole bo...
متن کامل